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Abstract

In the evolving domain of machine learning, ensuring the privacy and integrity of
training data across multi-party computations (MPC) is paramount. Our project
focuses on addressing the vulnerabilities of the existing MPC frameworks, particu-
larly in detecting and mitigating data poisoning attacks that can compromise the
outcomes of collaborative machine learning efforts. While platforms like Cerebro
have advanced multi-party cryptographic collaborative learning by ensuring data
consistency, they fall short in identifying malicious datasets introduced prior to
computation. To counter this, we propose an enhancement of the Cerebro platform
through several innovative methods: introducing a trusted third-party auditor with
zero-knowledge proofs, employing anomaly detection and outlier analysis through
normalization flows, and a novel approach of SISA (Shard, Isolated, Sliced, and
Aggregated) training. Each strategy aims to refine the detection of poisoned data
and to secure the model training process in MPC environments. We conduct exper-
iments using datasets like MNIST to validate the efficacy of our methods against
straightforward data perturbation attacks, providing a groundwork for further im-
provements in secure, privacy-preserving machine learning protocols. Our findings
reveal the potential of these enhancements to significantly bolster the robustness of
MPC frameworks against sophisticated adversarial inputs.

1 Introduction

In the digital age, data is a critical asset that powers machine learning (ML) systems across var-
ious applications, from healthcare diagnostics to financial forecasting. As the demand for more
sophisticated ML models grows, so does the need for larger and more diverse datasets. Often, these
datasets are sourced from multiple parties, each contributing sensitive or proprietary information.
This collaborative approach, however, introduces significant privacy concerns, particularly when
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parties are reluctant or legally restricted from sharing raw data. Multi-party computation (MPC) has
emerged as a solution to this challenge, allowing different entities to contribute to a computation
without exposing their individual datasets to others.

Despite its advantages, the implementation of MPC in machine learning is fraught with vulnerabilities,
particularly through data poisoning—where an adversary introduces malicious data to skew the model
in their favor. Current MPC frameworks like Cerebro offer robust platforms for collaborative learning
but primarily ensure only the consistency of the data used during and after the computation phases.
They are not equipped to detect when an adversary introduces a maliciously crafted dataset from the
outset, which can severely compromise the integrity of the machine learning model.

This project is motivated by the critical need to strengthen the defense mechanisms in MPC platforms
against such data poisoning attacks. We aim to enhance the existing frameworks by integrating
advanced detection techniques that can identify malicious data inputs before they impact the compu-
tation process. By focusing on the gaps in current systems—specifically the lack of pre-computation
security checks—our project seeks to develop methods that not only improve the reliability of data
consistency checks but also introduce novel auditing and verification processes that can withstand
sophisticated adversarial strategies.

We propose several advancements to address these challenges. First, by incorporating a trusted
third-party auditor capable of using zero-knowledge proofs to verify data integrity without revealing
the underlying data. Second, through anomaly detection and outlier analysis, we employ statistical
techniques to identify deviations from expected data distributions. Lastly, we explore the potential
of SISA training, a technique designed for robust machine unlearning, to incrementally validate
the integrity of data during the training process. These methodologies aim to create a more secure
and resilient framework for MPC in machine learning, ensuring that collaborative efforts are not
undermined by malicious activities.

Our approach is tested using simulated attacks on the MNIST dataset to demonstrate the effectiveness
of these enhancements. By addressing these challenges, our project contributes to the broader field of
secure machine learning, paving the way for more reliable and trustworthy systems in an increasingly
data-driven world.

2 Related Work

The goal of this topic is to apply MPC into machine learning to make the protocol or system secure and
preserve privacy at the same time. SecureML[1] introduce a system for scalable privacy-preserving
machine learning. In this paper, the authors present new and efficient protocols for linear regression,
logistic regression and neural network training using the stochastic gradient descent method. This
protocol is designed for secure two party computation machine learning.

In addition to the algorithm discussed in SecureML, Cerebro [2] builds a platform for multi-party
collaborative learning. This platform allows different parties to collaborate on machine learning
computation, while enabling users to achieve good performance without navigating the complex
performance tradoffs between MPC protocols. This platform also involve a auditing mechanism
to ensure the consistency of the protocol, making the protocol resistance to both semi-honest and
malicious adversaries.

Based on the SPDZ protocol [3] [4], recent research also designed a new MPC protocol [5] which
could identify the cheaters during the computation. There are three new properties: (1) identifiable
abort, which means all parties who do not follow the protocol will be identified by each honesty
parties and labelled as cheater; (2) completely identifiable auditability, which means a third party
could determine whether the computation is performed exactly as expected and get who cheated if
not; (3) openability, which means a distinguished coalition of parties can recover the MPC inputs.

MPC based machine learning is similar to collaborative or federated Learning. HOLMES[6] provide
a efficient protocol for collaborative learning, which integrates MPC, interactive zero-knowledge
and a lightweight consistency check for distribution testing. All these methods are combined to
dramatically decrease the complexity and increase the efficiency.

In order to check the integrity of client;s input, EIFFeL [7] is proposed, which is a system providing
secure aggregation of verified inputs (SAVI) for integrity check of any aithmetic circuit with public



parameters. SAVI protocols have three properties for the verification of integrity: (1) securely verify
the integrity of each local update, (2) aggregate only well-formed updates, and (3) release only the
final aggregate in the clear. Based on EIFFeL, the server could deploy arbitrary integrity checks of
the server’s masked updates. Meanwhile, a privacy reserving system named Prio [8] also be proposed
for the collection of aggregated statistics. It involves secret-shared non-interactive proofs (SNIPs),
which performs more efficient than zero-knowledge proof.

The most recent work in this area proposed a protocol with dishonest majority to perform MPC
over matrix rings[9], which is also based on the SPDZ protocol [3] [4]. In this work, the authors
propose a dishonest majority MPC protocol over matrix rings which supports matrix multiplication
and addition.

3 Preliminaries

3.1 Basis for MPC

3.1.1 Oblivious Transfer

In cryptography, an oblivious transfer (OT) protocol is a type of protocol in which a sender transfers
one of potentially many pieces of information to a receiver, but remains oblivious as to what piece
(if any) has been transferred. In an oblivious transfer protocol, a sender S has two inputs m and
my, and a receiver R has a selection bit b and wants to obtain m;, without learning anything else or
revealing b to S, which is denoted as

(L;mp) < OT(mg,my;b)

The description of Oblivious Transfer based on Decisional Diffie-Hellman Assumption (DDH) is
decribed below:

1. Let G be a cyclic group of order g with generator g. Receiver R randomly picks a number

a i Zg, calculates h, = g and randomly picks another number hq_; ﬁ G.

. Sender randomly picks two numbers 7 & Zq and rq & Zyq.
. R sends hg, hi to S.
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3.1.2 Garbled Circuit

Garbled circuit could be used to securely compute any function by two parties. The garbling scheme
is used to satisfy the standard security properties formalized in [10].

3.1.3 Secret Sharing and Multiplication Triplets

The secret share is used to to perform secure computation, which contains additively share Shr4(-),
reconstruction Rec” (-, -) and multiply share Mul“(-,-). The multiply share Mul*(-,-) takes ad-
vantage of Beaver’s pre-computed multiplication triplet technique. The two parties have shared

(u),{v),(z), where u,v & 7, and z = wumod2. Then P, locally computes (e) = (a) — (u)
and (f) = (b) — (v). Both parties run Rec({eg), (e1)) and Rec((fo),(f1)) and P; let (¢;) =
—i-e- f+ f-{(a); +e-(b); + (z);. Note that Boolean sharing can be seen as additive sharing in Z.

3.2 Introduction to Cerebro Platform

The platform named Cerebro supports P-parties to perform a single learning task with their secret
datasets. It also allows users to choose between two threat modes: semi-honest and malicious settings.
Both settings are defined in the context of cryptography. In other words, the model can only prevent



information leakage of users’ datasets when n — 1 parties are corrupted and form a semi-honest
adversary or there are parties deviate from the protocol. In the high level, how Cerebo achieves both
is by pre-defined sub-protocols and inconsistent data which will appear when misbehavior happening.
However, in machine learning world, instead of the protocol, the trained model could also be easily
attacked by carefully constructed dataset. An interesting example is that a skin cancer detection
model' had mistakenly thought every image that contained ruler marking was indicative of melanoma.
However, this was only because of the ruler markings contained in most of the images of malignant
lesions. Though this example is easy to detect when training is performed publicly, under MPC
settings, the definition of MPC does not allow anyone to learn any information about the training
set. Therefore, Cerebro cannot perform any work related with identifying maliciously constructed
datasets even if the attack method is as naive as the example above [11].

/ pe(x)de = / p.(z)dz =1 (by definition of a probability distribution) (1
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3.3 Normalizing flow

In the context of generative modeling, normalizing flows exploit the principle of the change of
variables (equation 1 and 2) to transform samples from a simple distribution (such as a normal
distribution) into samples from a more complex distribution. The second equations says if we want
to find a distribution p, (z) that every samples in the original space is mapped to a new space by f,
the only thing we need to do is plug the value after mapping (f(x)) into the new distribution p. ()
and multiply it by the absolute value of derivative of f(z) at z. However, since we are dealing with
feature vectors here, the derivative should be replaced by a Jacobian matrix which represent the
derivative at the higher-dimension space. Moreover, it is hard to find a single function that directly
maps the real-world distribution to a standard distribution like Guassian, so we need a series of
functions to achieve this, and we want all functions to be invertible and derivable so that the final
function after nesting is also invertible and derivable as shown in figure 1. For the transformation
function, one typical choice is just the linear transformation function f(x) = k X x + b, and the
parameter we want to train is all £ and b in each function with the objective function measuring the
distance between the real-world distribution after mapping and the ideal distribution like Guassian.
Also note that since the function is invertible, the whole model is a one-to-one mapping, and the
generated image is usually sampled from the ideal distribution and then mapped to the real-world
distribution. However, in this project, we only need to leverage the latent Guassian space.

4 Proposal Formulation

In this project, we want to make improvements and optimizations on the current platform Cerebro,
which is a platform to realize multi-party cryptography collaborative learning. We assume that there
are N parties in total, and they want to train a model with their private datasets. They use Cerebro to
perform MPC training, but the input of adversary is maliciously constructed training set. However,
the malicious input like data poisoning is not protected by the definition of MPC. The Cerebro has
a cryptographic auditing mechanism, but it cannot protect against any attack that happens before
computation begins, which means that an adversarial party can inject carefully crafted malicious
input into the secure computation in order to launch an attack on the computed result[2]. Cerebro
mandates the consistency of datasets used for training and auditing, aiming to catch cheaters who
might provide a sanitized dataset for audit purposes while claiming it was used during training. In
other words, if the cheaters provide sanitized dataset for auditing and say "this is what we used
for training", they will get caught. However, if adversary poisons the model and reject to provide
the original training dataset, no one can access its part of data due to MPC. Cerebro’s framework
automatically tags them as cheaters, but we do not have enough information of the dataset to prove

"Problematic cancer detection model https://www.sciencedirect.com/science/article/pii/
50022202X18322930
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Figure 1: Procedure of Normalization Flow

they are cheating. Therefore, we propose some potential solutions to adjust on Cerebro and solve the
problem:

- Auditor We could introduce a auditor which performs as a trusted third party to evaluate
the data based on. Data provider will encrypt their training data (during training to ensure
consistency) into ciphertext that only auditors can decrypt, and auditors can show that the
ciphertext does encrypt the dataset they use to other parties using zero-knowledge proof [5].
The auditor have privilege to directly open and decrypt the inputs without the permission of
data provider after the training process is done.

- Anomaly Detection and Outlier Analysis If the poisoning method applied to the data
have a slightly difference compared to the ground truth data, the Normalizing Flows could
be used to detect the outlier poisoned data. As mentioned before, Normalization flows are a
method for constructing complex distributions by transforming a probability density through
a series of invertible mappings[12]. The normalization flow could transfer a complex data
point such as MNIST Image to a simple Gaussian Distribution and vice versa. Due to the
different distribution of truth data and poisoned data, the Gaussian Distribution generated
from the Normalization flow will have a slightly different mean p and variance o. If a data
are distributed close to the  of poisoned dataset, it has a high probability to be a poisoned
data.

- SISA Training SISA training approach, short for Shard, Isolated, Sliced and Aggregated
training, is proposed for the purpose of machine unlearning [13]. In SISA, the data are
divided into shard and we train model in isolation on each of these shards. In addition,
rather than training each model on the entire shard directly, we can divide each shard’s data
into slices and present slices incrementally during training. We save the state of model
parameters before introducing each new slice[13]. Inspired by this idea, we could regarded
each parties dataset as a shard in our MPC. Firstly, we choose a small group of dataset which
are demonstrated as ground truth and train a starting model. Then based on and from the
starting model, we present shards (each party’s input dataset) incrementally during training,
test and record the loss as well as model status. After a shard is put into the incrementally
training procedure, if the model’s loss has a statistically significant decrease, then this shard
will be labelled as poisoned one. Then we could recover the last known model status and
start over.

- Model Comparison The last idea is very trivial. We assume there are N parties participat-
ing the MPC model training and each part input an dataset S;, 7 € [0, N]. Then we assume
there is one poisoned data set denoted by S, x € [0, N]. We firstly trained a normalizing
flow model on ground truth dataset, and then for each dataset, we select it as the suspicious
one (S;) and perform one round of audition. In each round, we combine the remaining 9
unselected sets into one dataset and input the selected dataset and the combined one into
the trained model. Then, we will get two latent space distributions, which would ideally be
similar to Guassian. Next, we calculate the distance (we use Kullback—Leibler divergence
here) between the two result distribution. If ¢ = z, we will get the maximum loss, which
indicates we successfully find the poisoned dataset within N rounds.

Cerebro platform introduces a naive approach of finding poisoned dataset called Cross
Validation, which chooses each party as suspicion at a time, remove its dataset, and retrain
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Figure 2: Example of Gradient-based poison algorithm

the whole model. If there is a round that the model performs significantly better, we mark
the suspicion in that round as cheater. However, this method is extremely inefficient because
once the number of suspicions grows up, we will need to retrain the model for factorial
number of times, which is completely impractical. Moreover, since poisoned dataset might
not always damage the performance, this method cannot be used to detect backdoor injection.
In contrast, we argue that our approach can solve both the efficiency and backdoor problems.
In the scenario that there are multiple malicious datasets, since we combine the remaining
samples together, as long as the majority of them are clean, the result should be the same:
the distance of poisoned dataset and the combined set should be larger. Moreover, since
backdoor injection will affect the distribution of normal examples, it will also increase the
distance between the poisoned set and the normal set.

m

max A(Dyqr, Ww*) = Z((yj,xj,w*) s.t. w* €argmin L(Dy, U (Xe, Ye), W) 3)

j=1
S Experimental Setup

5.1 Zero-knowledge Verifiable Encryption

We implement the encryption scheme mentioned in [5]. The scheme works in the field Zys:12 and
encrypts each pixel for each graph in the dataset. The two random large primes in the scheme is
chosen randomly from 128-bits numbers, and the final field has the same magnitude of the square
of the product of the two primes. We therefore have a 512-bits long number field. The cipher-text
of each pixel contains 2 512-bits long integer and the zero-knowledge prove can be immediately
generated by the party by the use of Fiat—Shamir heuristic. In the proving stage, prover first chooses
two random number and makes commitment on them. Then, prover challenges itself by the SHA-256
hash result of the commitment. Finally, the prover publishes the commitment, challenge and the
verification of correctly solving the challenge. By using this scheme, each party can encrypt their
dataset by the auditor’s public key and verify that other parties indeed at least encrypt "something" by
the same public key. They will also send all result to the auditor.

5.2 Attack Method

We use MNIST dataset with 50, 000 sample data to perform two naive attacks to demonstrate the
correctness of our method. We start with 10 different datasets, and each has size 5000 representing
the 10 parties who wish to perform MPC to co-train a model. However, one of the 10 datasets is
assumed to be poisoned, and we perform the following two attacks for the poisoned dataset.

- Empty Images Substitution we randomly choose ten percents (50) of images in each
class and replace them with empty images to simulate the perturbed dataset during auditing
phase. This method represents the easiest way of perturbation.

- Random Pixels Zero-out We randomly zero-out five percent (39) pixels of each image in
the same randomly chosen subset. This slightly stronger method is used to see if the our
models are able to detect more subtle changes.



- Gradient-based poison algorithm The simple attack algorithm [14] is based on Equation
3. The equation says we want to find the worst sample x. that when giving the best weight
(minimizing training loss L) w* after trained on the joint set of training set Dy, and the
malicious sample z, the adversary objective function A (defined by the sum of losses of all
points in validation set D,,,; with respect to w* here) is maximized. Some examples of this
attack method to MINIST dataset is shown in Figure 2.

5.3 Model Comparison with Normalizing Flow

To audit 10 datasets, we adopt the following approach which leverage normalizing flow model and
the computation of KL-divergence. We first train a normalizing flow model with 5000 ground-truth
sample images. Next, from the 10 parties’ datasets, we select one at a time and set it aside as our
suspect. Next, we combine the remaining 9 datasets to one and input it to the model. Now, we have
a latent distribution representing the dataset that is presumed to be clean. After that, we obtain a
second distribution on the dataset chosen for audition. Now, with two distribution, we compute the
KL-divergence between the two which we assume Gaussian. We can interpret the KL-divergence as
the measure of abnormality. Higher score suggests more deviation of the chosen dataset’s distribution
from the rest. By repeating this process 10 times for each datasets, we can identify which dataset(s)
are likely poisoned.

5.4 SISA Training

The 10 datasets are treated as 10 shards in the SISA training process as previously described. However,
we now need to train a ground truth model to establish a start point for model’s parameter. We use
5000 unused testing samples and their ground truth labels to train the initial model. This model serves
as a reference model for incremental learning. Now for each shard, we further divide them into 10
slices, and we sequentially introduce slices from each shard. After adding each slices, we take a
snapshot of model’s parameter and then introduce the next slice. After training with each slice, we
evaluate the model on the remaining unused testing set, which contains the final 5000 examples. If a
statistical significant loss increment or decrement is observed after introducing a shard, we label this
shard as potentially "poisoned".

6 Experiment Results

6.1 Encryption efficiency

We test our encryption scheme by directly implementing the pseudo code in [5]. We found that we
can roughly encrypt 80 images per minute in the encryption field of Zys12. This means for each party
holding 5000 images, it would take roughly an hour and half to encrypt all their images, which seems
slow at first. However, considering we are working under asymmetric scheme, we might need more
advanced scheme and techniques to further improve the performance. Moreover, unlike MNIST,
for float point number inputs, we will first need to represent them in integer form, and this process
might also be time-consuming. We also tested our encryption scheme in other fields. The encryption
efficiency drops significantly when we expanded the encryption for Zss12 to Zg1024, and then it drops
to unusable when we expanded the encryption for Zs1o24 to Zg204s, as described in Figure 3.

6.2 Normalizing Flow

We performed the auditing described above and found that the proposed method do work for the
three attacks. In the first scenario, as shown in figure 4 the KL-divergence score of the poisoned
distribution is always roughly higher than other datasets by 0.01 (0.002 vs 0.012). Since the result is
obvious, we did not further test on higher poison rate. For the second attack, as shown in figure 5
the score of the poisoned distribution is still always roughly higher than other datasets. In the worst
case where only 1% of pixels are removed, there is still identifiable difference between the poisoned
dataset and the normal ones. For the last attack, we set the poisoned budgets in a one percent interval
(5% means 5% to 6%), as shown in figure 6, though our method does not perform well in the worst
case, it can still recognize the poison dataset when the poison rate is around 10% and 20%. It is also
worth to note that, when the poison budget is set to 1% to 2%, the poison algorithm did not stop in
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reasonable time period, and it also takes more than 20 hours to run when the budget is set to about
5% in Google Colab with A100 GPU.

6.3 SISA Training

For his method, we poisoned subset 5, which is the slice number from 50 to 59. Unfortunately, the
result of SISA training is not very effective, which is described in Figure 7. We did not recognized a
significant decrement or increment of loss in the training procedure. After each slice being added, the
loss behaves randomly even with empty images attack.

7 Conclusion

In this project, we enhance the security and robustness of Multi-party Computation (MPC) platform
and its interaction with machine learning, especially for the robustness of Cerebro platform. In the
experiment, we used MINIST dataset, testing the efficiency of our encryption scheme and tested our
idea proposals. Apart from the original inefficient and ineffective audition phase, we found another
efficient method named normalization flow that could distinguish the poisoned dataset from benign
ones. Although our SISA training method did not perform well on the distinguishing the poisoned
dataset, we will continue to find the reason and improve it.

In conclusion, in this project we gave the Cerebro platform the power of distinguishing malicious
inputs. Original code is posed on [15].
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